mathespass.at Logo
mathespass.at
Deine Online Lernplattform




Diesen Inhalt teilen:


Nützliche Tools
Formelsammlung
Knobelbeispiele


Suche

Zusätzliches
Frage stellen
Feedback geben

Zylinder Volumen


Information:
Das Volumen eines Zylinders berechnest du mit folgender Formel:

$ V= r^2 \cdot \pi \cdot h $


Dabei ist $ r $ der Radius des Zylinders, h die Höhe und $ \pi $ eine irrationale Zahl ($ \pi = 3.1415926 $). Auf dem Taschenrechner gibt es eine eigene Taste für $ \pi $.


Beispiele:
1) Berechne das Volumen eines Zylinders mit dem Radius von $4 \ cm$ und der Höhe von $ 8 \ cm $.

Antwort:
Einsetzen in die Formel $ V= r^2 \cdot \pi \cdot h $ ergibt $ V= 4^2 \cdot \pi \cdot 8 = $ $ 16 \cdot \pi \cdot 8 = $ $ 128 \cdot \pi = $ $ \underline{\underline{ 402.12 \ cm^3 }} $


2) Berechne das Volumen eines Zylinders mit dem Radius von $2.6 \ dm$ und der Höhe von $ 7 \ dm $.

Antwort:
Einsetzen in die Formel $ V= r^2 \cdot \pi \cdot h $ ergibt $ V= 2.6^2 \cdot \pi \cdot 7 = $ $ 6.76 \cdot \pi \cdot 7 = $ $ 47.32 \cdot \pi = $ $ \underline{\underline{ 148.66 \ dm^3 }} $



Umkehraufgaben:
Du kannst die Formeln auch umformen:
$ r = \sqrt{ \dfrac{ V }{ \pi \cdot h } } \\[8pt] h = \dfrac{ V }{ r^2 \cdot \pi } $


Erste Formel:
$ V= r^2 \cdot \pi \cdot h \ \ \mid \ \div \pi \\[7pt] \dfrac{V}{\pi} = r^2 \cdot h \ \ \mid \ \div h \\[7pt] \dfrac{V}{ \pi \cdot h } = r^2 \ \ \mid \ \sqrt{} \\[7pt] \sqrt{ \dfrac{ V }{ \pi \cdot h } } = r $


Zweite Formel:
$ V= r^2 \cdot \pi \cdot h \ \ \mid \ \div \pi \\[7pt] \dfrac{V}{\pi} = r^2 \cdot h \ \ \mid \ \div r^2 \\[7pt] \dfrac{V}{ r^2 \cdot \pi } = h $



Dir hat diese Seite weitergeholfen? Dann klicke bitte auf 'Gefällt mir'.

Copyright © Leon Frischauf, 2010 - . Das Kopieren von Inhalten und Bildern dieser Website ist verboten.
Impressum --- Datenschutz