Wenn du mathematische Begriffen googlest, füge deinen Suchen einfach noch 'mathespass' hinzu. So bekommst du stets die beste Erklärung!
Transponierte Matrix
Exkurs (Lineare Algebra)
Information
Auf dieser Seite erklären wir dir, wie du die transponierte Matrix bestimmst.
Anleitung
Du bestimmst die transponierte Matrix, indem du die Zeilen mit den Spalten vertauscht. Die Spalten der transponierten Matrix sind somit die Zeilen der ursprünglichen Matrix. Die transponierte Matrix kannst du für jede rechteckige Matrix bestimmen.
Allgemeines Beispiel für eine $ 2 \times 3 $ Matrix:
$ A = \begin{pmatrix} \color{red}{a_{11}} & \color{blue}{a_{12}} \\ \color{green}{a_{21}} & \color{orange}{a_{22}} \\ \color{purple}{a_{31}} & \color{lightblue}{a_{32}} \end{pmatrix} $
Die Zeilen betrachtest du nun als die Spalten der neuen Matrix. Folglich ergibt sich:
$ A = \begin{pmatrix} \color{red}{a_{11}} & \color{green}{a_{21}} & \color{purple}{a_{31}} \\ \color{blue}{a_{12}} & \color{orange}{a_{22}} & \color{lightblue}{a_{32}} \end{pmatrix} $
Durchgerechnete Beispiele
Bilde die transponierte Matrix zu
$ A = \begin{pmatrix} \color{red}{1} & \color{blue}{-1} \\ \color{green}{2} & \color{orange}{4} \end{pmatrix} $.
Die Lösung:
Vertauschen der Zeilen mit den Spalten führt zu
$ A^{T} = \begin{pmatrix} \color{red}{1} & \color{green}{2} \\ \color{blue}{-1} & \color{orange}{4} \end{pmatrix} $
Bilde die transponierte Matrix zu
$ B = \begin{pmatrix} \color{red}{2} & \color{blue}{-6.8} & \color{green}{0} \\ \color{orange}{1} & \color{purple}{3} & \color{lightblue}{-10} \end{pmatrix} $.
Die Lösung:
Vertauschen der Zeilen mit den Spalten führt zu
$ B^{T} = \begin{pmatrix} \color{red}{2} & \color{orange}{1} \\ \color{blue}{-6.8} & \color{purple}{3} \\ \color{green}{0} & \color{lightblue}{-10} \end{pmatrix} $
Über die Autoren dieser Seite
Unsere Seiten werden von einem Team aus Experten erstellt, gepflegt sowie verwaltet. Wir sind alle Mathematiker und Lehrer mit abgeschlossenem Studium und wissen, worauf es bei mathematischen Erklärungen ankommt. Deshalb erstellen wir Infoseiten, programmieren Rechner und erstellen interaktive Beispiele, damit dir Mathematik noch begreifbarer gemacht werden kann. Dich interessiert unser Projekt? Dann melde dich bei admin@mathespass.at!